If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+2m-9=0
a = 1; b = 2; c = -9;
Δ = b2-4ac
Δ = 22-4·1·(-9)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{10}}{2*1}=\frac{-2-2\sqrt{10}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{10}}{2*1}=\frac{-2+2\sqrt{10}}{2} $
| 6(3a-4)=-4(a+5) | | 8x+3-2x=3(1+x) | | 9d=8d+10 | | 60+20+4x=180 | | 12.6+y=-26.4* | | -8n-1=95 | | 0.5x+0.75=0.25x+6 | | .5n+.25(n+7)=28 | | 2x/32=1/4 | | y-13=-76* | | s/5=43 | | -2n-10=14 | | S=10-2s | | 7x-3+3x=17-10x | | 58-x=-27* | | 8−2(n+3)=n+7−3n | | 19x-7=15+16x | | 45=27x | | 14x-23+14x=7-12x | | 1/4=2x/32 | | -26+a=83* | | 1+22x+12x+9=180 | | 6x-15=90+8 | | (6p-6)=90 | | 22=s+12 | | -3x-39=-4x+2(5x-6) | | 22.p=43.12 | | 1/4x+3/4x+1/4x+2=5 | | p-18=61* | | x+58=x+128 | | 1/4a+14=8 | | 2(4x-5)-3x=20 |